Exploiting Isogeny Cordillera Structure to Obtain Cryptographically Good Elliptic Curves
نویسندگان
چکیده
The security of most elliptic curve cryptosystems is based on the intractability of the Elliptic Curve Discrete Logarithm Problem (ECDLP). Such a problem turns out to be computationally unfeasible when elliptic curves are suitably chosen. This paper provides an algorithm to obtain cryptographically good elliptic curves from a given one. The core of such a procedure lies on the usage of successive chains of isogenies, visiting different volcanoes of isogenies which are located in different l–cordilleras.
منابع مشابه
Isogeny cordillera algorithm to obtain cryptographically good elliptic curves
The security of most elliptic curve cryptosystems is based on the intractability of the Elliptic Curve Discrete Logarithm Problem (ECDLP). Such a problem turns out to be computationally unfeasible when elliptic curves are suitably chosen. This paper provides an algorithm to obtain cryptographically good elliptic curves from a given one. The core of such a procedure lies on the usage of successi...
متن کاملIsogeny volcanoes
The remarkable structure and computationally explicit form of isogeny graphs of elliptic curves over a finite field has made them an important tool for computational number theorists and practitioners of elliptic curve cryptography. This expository paper recounts the theory behind these graphs and examines several recently developed algorithms that realize substantial (often dramatic) performan...
متن کاملE cient Scalar Multiplication by Isogeny Decompositions
On an elliptic curve, the degree of an isogeny corresponds essentially to the degrees of the polynomial expressions involved in its application. The multiplication by ` map [`] has degree `, therefore the complexity to directly evaluate [`](P ) is O(`). For a small prime ` (= 2, 3) such that the additive binary representation provides no better performance, this represents the true cost of appl...
متن کاملClass number formulas via 2-isogenies of elliptic curves
A classical result of Dirichlet shows that certain elementary character sums compute class numbers of quadratic imaginary number fields. We obtain analogous relations between class numbers and a weighted character sum associated to a 2-isogeny of elliptic curves.
متن کاملQ-curves and Galois representations
Let K be a number field, Galois over Q. A Q-curve over K is an elliptic curve over K which is isogenous to all its Galois conjugates. The current interest in Q-curves, it is fair to say, began with Ribet’s observation [27] that an elliptic curve over Q̄ admitting a dominant morphism from X1(N) must be a Q-curve. It is then natural to conjecture that, in fact, all Q-curves are covered by modular ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Research and Practice in Information Technology
دوره 40 شماره
صفحات -
تاریخ انتشار 2008